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Abstract

Bayes estimation of the reliability function for the inverse
Gaussian distribution is discussed. For the case that the mean lifetime
is known, Bayes estimators are obtained with Jeffreys' noninformative
prior and with the natural conjugate prior for the scale parameter.

In the case that both parameters are unknown, an estimator of reliability
is suggested which is based on the Bayes estimator obtained for the case
that the mean lifetime is known. This estimator is not Bayes but compares
favorably with the maximum likelihood and minimum variance unbiased

estimators as indicated by computer simulations.
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1. INTRODUCTION

The two-parameter inverse Gaussian distribution with probability density

function (pdf) in the form
3% 2 2
£(xju,2) = /2nx7)? exp [-A(x-p)“/2u°x], x> 0, u > 0, A > O, (1.1)

has been gstudied in the reliability or life testing context by several authors
(6, 9, 10]. The parameters in (1.1) have more appealing physical interpretations
for 1ife testing situations than other parametric forms of the pdf. The mean life
for the lifetime model (1.1) 1s psand A is a shape parameter. The variance 1is
uB/A so u is not a location parameter in the usual sense. Chhikara and Folks [6]
state some advantages of using the inverse Gaussian distribution as a lifetime
model over the log-normal distribution, and the wide variety of shapes generated
by the pdf (1.1) makes it a competitor to other lifetime distributiomns. 1In
addition, the inverse Caussian distributlon arises as the first passage time dis-
tribution of a Brownian motion process [7], justifying its use as a dJration time
or lifetime model on a physical basis. Several results have also been obtained
concerning tests for drift in Brownian motion processes (for example [5, 9, 13]).

Tweedie [15, 16] and Chhikara and Folks [3, 4, 6], among others, have studied

various sampling theory inferences concerning (1.1). Estimation for a three-para-

meter Iinverse Gaussian distribution was investigated recently by Padgett and Wei [12].

The cumulative distribution function (cdf) of (1.1) has been obtained in
closed form by Shuster [14] and Chhikara and Folks [6], and the survival function
or reliability is given in the form

1,
R(t|u,2) = 8L (A /) F(1-t/u)]

- exp(2/p) o[- (/) Q+t/) T, € > 0, (1.2)
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where ¢ denotes the cdf of the standard normal distribution. The minimum
variance unbiased estimator of R(t|u,\) was derived by Chhikara and Folks [6]
and lower confidence bounds for (l.2) were given in [10]. However, due to the
complicated nature of the expression (1.2), other inferences concerning the re-
liability seem to be difficulc.

Recently, Banerjee and Bhattacharyya [1] presented a Bayesian analysis of
the inverse Gaussian distribution in a different parametric form than (1.1) (see
Johnson and Kotz [8] for other forms of (1.1)). As was stated in (1],

Bayesian inferences concerning reliability are extremely difficult and require
numerical integration to plot the posteribr pdf or to determine HPD intervals

for reliability. However, Bayes estimation can be performed in come cases, and

it is the purpose of this note to present Bayes estimators of R(t[u,A) for the

case that the mean life y is known, which is reasonable in many reliability problems.
Vague priors as well as a conjugate family of prior distributions are used. 1In

the case that y and X are both unknown, an estimator of (1.2) is propdsed which,

as indicated by some Monte Carlo simulation results, 1s overall as good as the
minimum variance unblased estimator or maximum likelihood estimator given in [6]

and i{s simpler to calculate than the minimum variance unblased estimator. The

results bear a remarkable similarity to those for the two-parameter log-normal

R B et i

model given by Padgett and Wei [11].

2. ESTIMATION OF RELIABILITY

For a random sample x = (xl, ceey xn) from the inverse Gaussian distribution

(1.1), the 1likelihood function is given by
n 3 s oo
10, « 1 Xy /2 exp [~ %-(5§-+ L x Y (2.1)
i=1 m i=1
- -1 0
where x = n Ix The Fisher information matrix has determinant
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1 ()] = (u3k)-l, and hence, Jeffreys' vague prior (Box and Tiao [2]) is
n

Ny

p(usd) « (u3l)_ » which when combined with the likelihood (2.1) does not produce
a tractable or proper posterior distribution. Also, following the vague prior
idea of Box and Tiao [2] and taking p(ulA)‘ constant and p(\) = A-l, mathemati-

cally intractable posterior distributions for estimating R(tlu,k) are obtained.

It is assumed here that ¥, the mean life, is known, and Jeffreys' noninformative
prior p(}) « A-l is used for A. In addition, the gamma family of distributions

is a natural conjugate family for 1A, and Bayes estimators of R(tlu,x) for this

case will be indicated.

For the improper prior p(}) « A-l, the posterior distribution of A, given x,

is from (2.1)

n

pOxm) = KA F expl - =5 & (x, -w)i/x, 1, (2.2)
= 2 i 1
2u" =1
where the constant K is given by
n ]
K= PG £ (x, wl/x, 1.
2V =1

Hence, p(A|x, u) is a gamma distribution of the form

PO x.u) = [ @)8®17 L 2% exp(-2/8), 1 > 0,

n
with a = n/2 and B = 2u2/ z [(x1 - u)zlxi]. Then with respect to a squared-error
i=1

- n
loss function, the Bayes estimator of A is Ag = n;?/ z [(x1 - u)zlxi], which is
i=}]
the same as the mie of A when y 18 known. For R(t |u,)), with respect to squared-

error loss, the Bayes estimator for the improper prior is R‘(t) - EA[R(t| u.A)llj.

Thus, from (1.2), for each t > 0,
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Ry() = B, [ ¢((A/DF (1-t/)]
- Eylexp(20/u)  O(=(A/0)*F (e 1. (2.3)

To evaluate the first expected value in (2.3), Lemma 1 of Padgett and Wei

-y
[11) may be applied with ¢ in that lemma equal to t (1 - t/u). Thus,

B L0 (/6% (1he/i)) 1 = PLT, < (1-t/w) h/©)%], (2.4)

where a and B8 are parameters of the posterior pdf p(A|x,u) defined previously

and Tv denotes a random variable having Student's t-distribution with v degrees

of freedom. The second expected value on the right-hand side of (2.3) is evaluated
similarly after absorbing the exponential term into the posterior density (2.2).

Again, by Lemma 1 of [11] with ¢ ---t—!6 (1+t/u),
B Lexp(20/u) 0(~(0/)* (13t/u))]

= (1-28/)7%P(T, < - (L+e/u)lau/(t(u-28)) 1%}, v (2.5)

2

Therefore, the Bayes estimator ﬁB(t) is given by (2.5) subtracted from (2.4).
This estimate may be easily computed since it involves only probabilities for
the t distribution.

If the gamma family of priors with parameters y and § in the form
p(}) = XY-I exp(-1/6) 1is used for A, then the same kind of expected values are
obtained as in (2.3). Applying Lemma 1 of [11] again yields the Bayes estimator

of reliability as

- - k
Rg(t) = PIT, , < c, (y4/s0)¥)

- [sa/(sx-2/) 1" P{Ty o < c ly*/(s#-2/w) 1},

where y* = y + n/2,

e
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n )
L (xi-u) /xi. c
{=1

1 1

- 2 - _1“. _15
8% = 8§ 4+ (2u°) i (1-t/p), and c,= -t 1+t /u).

These results bear a resemblance to those of the log-normal (or normal)
failure model obtained in [11] (see also [1]). Also, it should be remarked
that for the noninformative prior p(u|\) = constant, p(}) « x"l, estimates of
R(t|u,)) may be obtained by numerical integration, but a closed-form expression
for the estimator seems extremely difficult to obtain. 1f both A and v are
unknown, one may be tempted to use the mte, X = ;, in the expressions (2.4) and
(2.5) to obtain an estimate of reliability iﬂ(t)’ The effect of this 1s indicated

in the next section by some computer simulation results.
3. MONTE CARLO SIMULATIONS

Since direct comparisons of the bghavior of variocus estimators of R(t]p,A)
are not feasible due to the mathematical complexity of the estimators, Monte Carxlo
simulations were performed. The maximum likelihood (ML) and minimum Yatiance
unbilased (MVU) estimators when p is known were compared with the corresponding
Bayes estimator (2.3). For several values of t, pu, and A, 2000 samples of size
n (= 10, 20, 30) were generated and the average squared errors (ASE) and average
estimated reliability (AER) were computed for each estimator, S$imilar to the
results in [11], the Bayes estimator had an overall smaller mean squared error
than the ML and MVU estimators, as anticipated. For the case that y and A both
were unknown, the estimator iﬁ(t) suggested at the end of Section 2 (using (2.3)
with u replaced by x = ;) was compared with the ML and MVU estimators given in [6]
in the same kind of simulation procedure. Surprisingly, this estimator performed
as well as the MVU estimator in the s2nse of average value and did not have a
uniformly larger ASE than either the ML or MVU estimator. Some of the results of

the simulations in the latter case are given in Table 1.
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4. AN EXAMPLE

As an example, the estimator EB(C) as well as the ML and MVU estimators
were used to estimate reliability for geveral values of t from the n=46 repalr
time observatlons (in hours) for an airborne communication transcelver ([17] and
[61). Chhikara and Folks 6] obtatned a good Tt to this data by the Inverse
Gaussian distribution with ﬁ = x = 3.61 and i = 1.704. The cestimates of

reliability are given in Table 2.

Table 2. Estimates of Reliability

t 1 2 3 5 10 15
EB(C) 0.6934 0.4578 0.3305 0.1984 0.0789 0.0388
MLE 0.6986 0.4607 0.3325 0.1996 0.0791 0.0386
MVUE 0.6951 0.4618 0.3368 0.2057 0.0829 0.0396

5. CONCLUSION

For the case that the mean lifetime u in the inversc Caussian model is
known, the posterior distribution of A is easily obtained for the Jeffreys
prior and the natural conjugate prior as indicated by Banerjee and Bhattacharyya
{1]. For this case the Bayes estimators of reliability given in Section 2
regsemble the analogoﬁs results in the log-normal (or normal) model., If both
p and A are unknown, the Bayes solution for reliability in a compact form seems
to be extremely difficult, at least for the parametric form (1.1). It also seems
to be even more difficult Lo obtain a Bayes estimator for the failure rate
function or mean residual life. Hence, an estimator, in(t). of reliability was
proposed for this case in Section 2, and its propertics were indicated as a result
of computer simulations. For other Bayesian inferences on reliability, numerical
integrations must be performed in any actual application to obtain the posterior

distribution of reliability.
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